费马大定理证明过程(怀尔斯证明费马大定理的过程)

本篇文章给大家谈谈费马大定理证明过程,以及怀尔斯证明费马大定理的过程对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、费马大定理证明过程是怎么样的?...

本篇文章给大家谈谈费马大定理证明过程,以及怀尔斯证明费马大定理的过程对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

费马大定理证明过程是怎么样的?

费马大定理的证明方法:

x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。

但x^3+y^3=z^3却始终没找到整数解。最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。

扩展资料:

费马大定理,由17世纪法国数学家皮耶·德·费玛提出。他断言当整数n 2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。

参考资料来源:百度百科-费马大定理

费马大定理的证明过程有哪些?

费马点的证明

如图,在△ABC中,P为其中任意一点。连接AP,BP,得到△ABP。

合并图册

合并图册(2张)

以 点B为旋转中心,将 △ABP逆时针旋转 60°,得到△EBD

∵旋转60°,且BD=BP,

∴△DBP 为一个等边三角形

∴PB=PD

因此, PA+PB+PC=DE+PD+PC

由此可知当E、D、P、C 四点共线时, 为PA+PB+PC最小

若E、D、P共线时,

∵等边△DBP

∴∠EDB=120°

同理,若D、P、C共线时,则 ∠CPB=120°

∴P点为满足∠APB=∠BPC=∠APC=120° 的点。

历史背景

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王“。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

费马大定理证明过程是什么样的?

费马大定理的证明方法:x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。但x^3+y^3=z^3却始终没找到整数解。

最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。因此,就有了:

已知:a^2+b^2=c^2

令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。

因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……

设:a=d^(n/2),b=h^(n/2),c=p^(n/2);

则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……

当n=1时,d+h=p,d、h与p可以是任意整数。

当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 = a^2+b^2=c^2。

当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。

因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。

a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。

假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。

扩展资料

关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一。按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命。在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文。

碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间。之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年。

美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明。他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金。

怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数。因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人认为当年的费马其实毫无发现,或者只是想到了一个错误的方法。

参考资料来源:百度百科-费马大定理

费马大定理的证明过程?(喜欢26数字的人请进)

费马大定理证明过程:

对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。

关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式

引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。

本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。

定义1.费马方程

人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。

在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.

定义2.增元求解法

在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。

利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。

下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。

一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”

定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:

a≥3

{ b=(a^2-Q^2)÷2Q

c= Q+b

则此时,a^2+b^2=c^2是整数解;

证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:

Q2 Qb

其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长

Qb

为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。

故定理1得证

应用例子:

例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?

解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:

a= 15

{ b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112

c=Q+b=1+112=113

所以得到平方整数解15^2+112^2=113^2

再取a为15,选增元项Q为3,根据定a计算法则得到:

a= 15

{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36

c=Q+b=3+36=39

所以得到平方整数解15^2+36^2=39^2

定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。

二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”

定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。

证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;

b 2b

3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;

3b 4b

3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。

故定理2得证

应用例子:

例2.证明303^2+404^2=505^2是整数解?

解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计

4

算法则,以直角三角形 3×101 5×101 关系为边长时,必有

4×101

303^2+404^2=505^2是整数解。

三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”

3a + 2c + n = a1

(这里n=b-a之差,n=1、2、3…)

定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。

证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:

a1=3×3+2×5+1=20 这时得到

20^2+21^2=29^2 继续利用公式计算得到:

a2=3×20+2×29+1=119 这时得到

119^2+120^2=169^2 继续利用公式计算得到

a3=3×119+2×169+1=696 这时得到

696^2+697^2=985^2

故定差为1关系成立

现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:

a1=3×21+2×35+7=140 这时得到

140^2+147^2=203^2 继续利用公式计算得到:

a2=3×140+2×203+7=833 这时得到

833^2+840^2=1183^2 继续利用公式计算得到:

a3=3×833+2×1183+7=4872 这时得到

4872^2+4879^2=6895^2

故定差为7关系成立

再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:

a1=3×387+2×645+129=2580 这时得到

2580^2+2709^2=3741^2 继续利用公式计算得到:

a2=3×2580+2×3741+129=15351 这时得到

15351^2+15480^2=21801^2 继续利用公式计算得到:

a3=3×15351+2×21801+129=89784 这时得到

89784^2+89913^2=127065^2

故定差为129关系成立

故定差n计算法则成立

故定理3得证

四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:

定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;

(一) 奇数列a:

若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:

a=2n+1

{ c=n^2+(n+1)^2

b=c-1

证:由本式条件分别取n=1、2、3 … 时得到:

3^2+4^2=5^2

5^2+12^2=13^2

7^2+24^2=25^2

9^2+40^2=41^2

11^2+60^2=61^2

13^2+84^2=85^2

故得到奇数列a关系成立

(二)偶数列a:

若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:

a=2n+2

{ c=1+(n+1)^2

b=c-2

证:由本式条件分别取n=1、2、3 … 时得到:

4^2+3^2=5^2

6^2+8^2=10^2

8^2+15^2=17^2

10^2+24^2=26^2

12^2+35^2=37^2

14^2+48^2=50^2

故得到偶数列a关系成立

故定理4关系成立

由此得到,在直角三角形a、b、c三边中:

b-a之差可为1、2、3…

a-b之差可为1、2、3…

c-a之差可为1、2、3…

c-b之差可为1、2、3…

定差平方整数解有无穷多种;

每种定差平方整数解有无穷多个。

以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。证明如下:

我们首先证明,增比计算法则在任意方次幂时都成立。

定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。

证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,

得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m

原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)

两边消掉 n^m后得到原式。

所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。

故定理5得证

定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。

证:取定理原式a^m+b=c^m

取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m

原式化为: n^m(a^m+b)=n^mc^m

两边消掉n^m后得到原式。

由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。

所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。

故定理6得证

一元代数式的绝对方幂与绝对非方幂性质

定义3,绝对某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。例如:n^2+2n+1,n^2+4n+4,

n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。

一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。

定义4,绝对非某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。

当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。

一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。

推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;

推理:不含方幂项的一元代数式对任何方幂没有唯一性。2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……

证明:一元代数式存在m次绝对非方幂式;

在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。这就是一元代数式的代数公理。即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。

当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。这种关系是:

(n+1)^3-3n= n^3+3n^2+1

(n+1)^3-3n^2= n^3+3n+1

(n+1)^3-n^3=3n^2+3n+1

所以得到:当取n=1、2、3、4、5 …

n^3+3n^2+1≠(n+1)^3

n^3+3n+1≠(n+1)^3

3n2+3n+1≠(n+1)^^3

即这3个代数式的值都不能等于(n+1)^3形完全立方数。

当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,

n^3+3n^2+1=5≠1

n^3+3n+1=5≠1

3n^2+3n+1=7≠1

所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数。这些代数式是3次绝对非方幂式。

由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数。这些代数式是4次绝对非方幂式。

能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数。这些代数式是m次绝对非方幂式。

现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;

2次方时有:(n+1)^2-n^2

=n^2+2n+1-n^2

=2n+1

所以,2次方相邻整数的平方数的增项差公式为2n+1。

由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系。但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:

由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;

由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;

由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解。

所以费马方程x^n+y^n=z^n在指数为2时成立。

同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立。

3次方时有:(n+1)^3-n^3

=n^3+3n^2+3n+1-n^3

=3n^2+3n+1

所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1。

由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式。所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:

由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;

由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;

由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为3时无整数解。

4次方时有;(n+1)^4-n^4

=n^4+4n^3+6n^2+4n+1-n^4

=4n^3+6n^2+4n+1

所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1。

由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式。所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:

由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为4时无整数解。

m次方时,相邻整数的方幂数的增项差公式为:

( n+1)^m-n^m

=n^m+mn^m-1+…+…+mn+1-n^m

=mn^m-1+…+…+mn+1

所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1。

由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式。所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:

由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为m时无整数解。

所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解。

求费马大定理的全部证明过程!!!

 费马大定理证明过程:

对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。

关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式

引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。

本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。

定义1.费马方程

人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。

在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.

定义2.增元求解法

在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。

利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。

下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。

一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”

定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:

a≥3

{ b=(a^2-Q^2)÷2Q

c= Q+b

则此时,a^2+b^2=c^2是整数解;

证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:

Q2 Qb

其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长

Qb

为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。

故定理1得证

应用例子:

例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?

解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:

a= 15

{ b=(a^2- Q^2)÷2Q=(15^2-1^2)÷2 =112

c=Q+b=1+112=113

所以得到平方整数解15^2+112^2=113^2

再取a为15,选增元项Q为3,根据定a计算法则得到:

a= 15

{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36

c=Q+b=3+36=39

所以得到平方整数解15^2+36^2=39^2

定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。

二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”

定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。

证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;

b 2b

3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;

3b 4b

3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。

故定理2得证

应用例子:

例2.证明303^2+404^2=505^2是整数解?

解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计

4

算法则,以直角三角形 3×101 5×101 关系为边长时,必有

4×101

303^2+404^2=505^2是整数解。

三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”

3a + 2c + n = a1

(这里n=b-a之差,n=1、2、3…)

定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。

证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:

a1=3×3+2×5+1=20 这时得到

20^2+21^2=29^2 继续利用公式计算得到:

a2=3×20+2×29+1=119 这时得到

119^2+120^2=169^2 继续利用公式计算得到

a3=3×119+2×169+1=696 这时得到

696^2+697^2=985^2

故定差为1关系成立

现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:

a1=3×21+2×35+7=140 这时得到

140^2+147^2=203^2 继续利用公式计算得到:

a2=3×140+2×203+7=833 这时得到

833^2+840^2=1183^2 继续利用公式计算得到:

a3=3×833+2×1183+7=4872 这时得到

4872^2+4879^2=6895^2

故定差为7关系成立

再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:

a1=3×387+2×645+129=2580 这时得到

2580^2+2709^2=3741^2 继续利用公式计算得到:

a2=3×2580+2×3741+129=15351 这时得到

15351^2+15480^2=21801^2 继续利用公式计算得到:

a3=3×15351+2×21801+129=89784 这时得到

89784^2+89913^2=127065^2

故定差为129关系成立

故定差n计算法则成立

故定理3得证

四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:

定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;

(一) 奇数列a:

若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:

a=2n+1

{ c=n^2+(n+1)^2

b=c-1

证:由本式条件分别取n=1、2、3 … 时得到:

3^2+4^2=5^2

5^2+12^2=13^2

7^2+24^2=25^2

9^2+40^2=41^2

11^2+60^2=61^2

13^2+84^2=85^2

故得到奇数列a关系成立

(二)偶数列a:

若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:

a=2n+2

{ c=1+(n+1)^2

b=c-2

证:由本式条件分别取n=1、2、3 … 时得到:

4^2+3^2=5^2

6^2+8^2=10^2

8^2+15^2=17^2

10^2+24^2=26^2

12^2+35^2=37^2

14^2+48^2=50^2

故得到偶数列a关系成立

故定理4关系成立

由此得到,在直角三角形a、b、c三边中:

b-a之差可为1、2、3…

a-b之差可为1、2、3…

c-a之差可为1、2、3…

c-b之差可为1、2、3…

定差平方整数解有无穷多种;

每种定差平方整数解有无穷多个。

以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。证明如下:

我们首先证明,增比计算法则在任意方次幂时都成立。

定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。

证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,

得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m

原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)

两边消掉 n^m后得到原式。

所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。

故定理5得证

定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。

证:取定理原式a^m+b=c^m

取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m

原式化为: n^m(a^m+b)=n^mc^m

两边消掉n^m后得到原式。

由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。

所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。

故定理6得证

一元代数式的绝对方幂与绝对非方幂性质

定义3,绝对某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。例如:n^2+2n+1,n^2+4n+4,

n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。

一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。

定义4,绝对非某次方幂式

在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。

当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。

一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。

推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;

推理:不含方幂项的一元代数式对任何方幂没有唯一性。2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……

证明:一元代数式存在m次绝对非方幂式;

在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。这就是一元代数式的代数公理。即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。

当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。这种关系是:

(n+1)^3-3n= n^3+3n^2+1

(n+1)^3-3n^2= n^3+3n+1

(n+1)^3-n^3=3n^2+3n+1

所以得到:当取n=1、2、3、4、5 …

n^3+3n^2+1≠(n+1)^3

n^3+3n+1≠(n+1)^3

3n2+3n+1≠(n+1)^^3

即这3个代数式的值都不能等于(n+1)^3形完全立方数。

当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,

n^3+3n^2+1=5≠1

n^3+3n+1=5≠1

3n^2+3n+1=7≠1

所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数。这些代数式是3次绝对非方幂式。

由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数。这些代数式是4次绝对非方幂式。

能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数。这些代数式是m次绝对非方幂式。

现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;

2次方时有:(n+1)^2-n^2

=n^2+2n+1-n^2

=2n+1

所以,2次方相邻整数的平方数的增项差公式为2n+1。

由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系。但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:

由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;

由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;

由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解。

所以费马方程x^n+y^n=z^n在指数为2时成立。

同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立。

3次方时有:(n+1)^3-n^3

=n^3+3n^2+3n+1-n^3

=3n^2+3n+1

所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1。

由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式。所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:

由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;

由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;

由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为3时无整数解。

4次方时有;(n+1)^4-n^4

=n^4+4n^3+6n^2+4n+1-n^4

=4n^3+6n^2+4n+1

所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1。

由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式。所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:

由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;

由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为4时无整数解。

m次方时,相邻整数的方幂数的增项差公式为:

( n+1)^m-n^m

=n^m+mn^m-1+…+…+mn+1-n^m

=mn^m-1+…+…+mn+1

所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1。

由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式。所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系。但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:

由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;

由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;

……

这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数。

所以费马方程x^n+y^n=z^n在指数为m时无整数解。

所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解。

费马大定理: 当整数n 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。

费马矩阵大定理:当整数n 2时,关于m行m列矩阵X, Y, Z的不定矩阵方程 X^n + Y^n =Z^n. 矩阵的元素中至少有一个零。当整数n = 2时,求m行m列矩阵X, Y, Z。

费马大定理是如何证明的?

费马中值定理公式:

利用连续函数在闭区间的介值定理可解决的一类中值问题,即证明存在ξ∈[a,b],使得某个命题成立。利用罗尔定理、费马定理可解决的一类中值定理,即证明存在ξ∈[a,b],使得H(ξ,f(ξ),f’(ξ))=0。

费马定理通俗解释

费马大定理,也即费马方程,其中的N如果等于或大于3,就将不可能有完全的整数解,也即就将进入某种创造性“三”的混沌域。只有进入了混沌域才可能产生和创造新的事物。

费马大定理,简单理解就是费马提出的一个定理,具体定理的内容就是x的N次方+y的N次方=z的N次方,当n大于2时,这个方程没有任何整数解。

这个等式看起来和我们初中学过的勾股定理很像,而费马大定理就是费马在勾股定理的基础上进行的一个研究。

2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即勾股定理。

大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:

“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。

上一篇:尼日利亚首都(尼日利亚首都阿布贾安全吗)
下一篇:王鸥明道(王鸥明道综艺)

为您推荐

发表评论